Directed colloidal self-assembly in toggled magnetic fields.

نویسندگان

  • James W Swan
  • Jonathan L Bauer
  • Yifei Liu
  • Eric M Furst
چکیده

Suspensions of paramagnetic colloids are driven to phase separate and self-assemble by a toggled magnetic field. Initially, all suspensions form network structures that span the sample cell. When the magnetic field is toggled, this network structure coarsens diffusively for a time that scales exponentially with frequency. Beyond this break through time, suspensions cease diffusive coarsening and undergo an apparent instability. The magnetic field drives suspensions to condense into dispersed, domains of bodycentered tetragonal crystals. Within these domains the crystalline order depends on the pulse frequency. Because the scaling of the break through time with respect to frequency is exponential, the steady state limit corresponding to an infinite pulse frequency is kinetically arrested and the equilibrium state is unreachable. These experiments show that there is an out-of-equilibrium pathway that can be used to escape a kinetically arrested state as well as a diverging time scale for phase separation as the critical frequency for condensation is approached. Rather than fine tuning the strength of the interactions among particles, a simple annealing scheme - toggling of the magnetic field - is used to create a broad envelope for assembly of ordered particle structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triggered self-assembly of magnetic nanoparticles.

Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same ...

متن کامل

Self-assembly of colloidal pyramids in magnetic fields.

We study routes toward the construction of 2D colloidal pyramids. We find that magnetic beads may self-assemble into pyramids near a nonmagnetic 1D boundary as long as the number of beads in the pyramid does not exceed 10. We have also found that a strong magnetic field gradient could act as a boundary, thus assisting the self-assembly of magnetic colloids in water, and have observed the format...

متن کامل

Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly.

Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic mod...

متن کامل

Hierarchical self-assembly of colloidal magnetic particles into reconfigurable spherical structures.

Colloidal self-assembly has enormous potential as a bottom-up means of structure fabrication. Here we demonstrate hierarchical self-assembly of rationally designed charge-stabilised colloidal magnetic particles into ground state structures that are topologically equivalent to a snub cube and a snub dodecahedron, the only two chiral Archimedean solids, for size-selected clusters. These spherical...

متن کامل

Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals

We demonstrate fabrication of novel magnetically controllable photonic crystals formed through the self-assembly of highly charged, monodisperse superparamagnetic colloidal spheres. These superparamagnetic monodisperse charged polystyrene particles containing nanoscale iron oxide nanoparticles were synthesized through emulsion polymerization. They self-assemble into crystalline colloidal arrays...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2014